Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309183

RESUMO

Methylglyoxal is a common cytotoxic metabolite produced in plants during multiple biotic and abiotic stress. To mitigate the toxicity of MG, plants utilize the glyoxalase pathway comprising glyoxalase I (GLYI), glyoxalase II (GLYII), or glyoxalase III (GLYIII). GLYI and GLYII are the key enzymes of glyoxalase pathways that play an important role in abiotic stress tolerance. Earlier research showed that MG level is lower when both GLYI and GLYII are overexpressed together, compared to GLYI or GLYII single gene overexpressed transgenic plants. D-lactate dehydrogenase (D-LDH) is an integral part of MG detoxification which metabolizes the end product (D-lactate) of the glyoxalase pathway. In this study, two Arabidopsis transgenic lines were constructed using gene pyramiding technique: GLYI and GLYII overexpressed (G-I + II), and GLYI, GLYII, and D-LDH overexpressed (G-I + II + D) plants. G-I + II + D exhibits lower MG and D-lactate levels and enhanced abiotic stress tolerance than the G-I + II and wild-type plants. Further study explores the stress tolerance mechanism of G-I + II + D plants through the interplay of different regulators and plant hormones. This, in turn, modulates the expression of ABA-dependent stress-responsive genes like RAB18, RD22, and RD29B to generate adaptive responses during stress. Therefore, there might be a potential correlation between ABA and MG detoxification pathways. Furthermore, higher STY46, GPX3, and CAMTA1 transcripts were observed in G-I + II + D plants during abiotic stress. Thus, our findings suggest that G-I + II + D has significantly improved MG detoxification, reduced oxidative stress-induced damage, and provided a better protective mechanism against abiotic stresses than G-I + II or wild-type plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lactato Desidrogenases , Lactoilglutationa Liase , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Estresse Fisiológico , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lactatos , Regulação da Expressão Gênica de Plantas , Aldeído Pirúvico/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Arabidopsis/genética
2.
Physiol Mol Biol Plants ; 28(7): 1375-1390, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36051227

RESUMO

Homoeostasis of glutathione (GSH) is crucial for plant survival and adaptability against stress. Despite the presence of complete Arabidopsis and rice genome sequence, the comprehensive analysis of the GSH metabolizing genes is still missing. This research concentrated on the comprehensive understanding of GSH metabolizing genes in two model plants-Arabidopsis and rice in terms of their subcellular localization, exon-intron distribution, protein domain structure, and transcript abundance. Expression profiling using the microarray data provided significant evidence of their participation in response to various abiotic stress conditions. Besides, some of these GSH metabolizing genes revealed their expression alteration in several developmental changes and tissue diversification. The presence of various stress-specific cis-regulatory elements in the promoter region of GSH metabolizing genes could be directly correlated with their stress-specific transcript alteration. Moreover, the application of exogenous GSH significantly downregulated GSH synthesizing genes and upregulated GSH metabolizing genes in Arabidopsis with few exceptions indicating a product-dependent regulation of GSH metabolizing genes. Interestingly, validation of rice GSH metabolizing genes in response to drought and salinity showed an almost similar pattern of expression in quantitative real-time as observed by microarray data. Altogether, GSH metabolizing members are a promising and underutilized genetic source for plant improvement that could be used to enhance stress tolerance in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01220-5.

3.
Plant Physiol Biochem ; 123: 54-64, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29223068

RESUMO

Stress induces the generation of Reactive Oxygen Species (ROS) that ultimately hampers the growth, development, and productivity of the plant. As an antioxidant enzyme, catalase converts hydrogen peroxide to water and keeps ROS level down to protect cells from stress-induced apoptosis. Here, a genome-wide analysis of catalase gene family has been performed in two model plants- Arabidopsis thaliana and Oryza sativa. Both Arabidopsis and rice has a small family of three and four genes, respectively; that code for seven proteins each. Detailed analysis of these members in terms of their structure, duplication, chromosomal position and proteins subcellular localization, as well as expression profiling under various developmental and environmental cues, was performed. Catalase proteins were mostly found to be localized in the cytoplasm, followed by peroxisome and mitochondria. Phylogenetically plant catalases showed strong divergence from their non-plant counterparts. Expression profiling revealed that AtCAT3 and OsCATA are the constitutively expressive member; while AtCAT2, OsCATA, and OsCATC are the stress-responsive members. Moreover, an altered level of total rice catalase enzyme activity and H2O2 level was observed under various abiotic stress conditions. This indicates the stress-responsive transcriptome as well as proteome alteration of catalase in the plant.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Catalase , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Família Multigênica/fisiologia , Oryza , Estresse Fisiológico/fisiologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Catalase/biossíntese , Catalase/genética , Oryza/enzimologia , Oryza/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...